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The effective conductivity a* of an infinitely interchangeable two-component 
random medium is considered. This class of media includes cell materials in the 
continuum and the bond lattice on Z d, where the cells or bonds are randomly 
assigned the conductivities a 1 and cr 2 (al, a2~0) with probabilities pt and 
P2 = 1 - P l .  A rigorous basis for the very old and widely used low volume frac- 
tion expansion of a* is established, by proving that a* is an analytic function 
of P2 in a suitable domain containing [0, 1]. In the case of the bond lattice in 
d= 2, rigorous fourth-order upper and lower bounds on a* valid for all P2, as, 
and a 2 are derived. The four perturbation coefficients entering into the bounds 
are obtained from the first-order volume fraction coefficient using the method of 
infinite interchangeability. 

KEY WORDS: Effective conductivity; random resistor network; composites; 
cell materials; perturbation expansions; bounds. 

1. I N T R O D U C T I O N  

C o n s i d e r  t h e  effective c o n d u c t i v i t y  a*  of  a t w o - c o m p o n e n t  r a n d o m  

m e d i u m  wi th  c o n s t i t u e n t  conduc t iv i t i e s  61 and  o- 2 in the v o l u m e  f rac t ions  

p~ a n d  p2 = 1 - P l .  W e  h a v e  in m i n d  e i ther  a cell m a t e r i a l  (1) in the  con-  

t i n u u m  Nd, whe re  all space  is d iv ided  in to  cells wh ich  are  then  r a n d o m l y  

ass igned the  conduc t iv i t i e s  a I and  a 2 wi th  p robab i l i t i e s  p~ and  P2, o r  the 

b o n d  la t t ice  in y_a, where  the  b o n d  conduc t iv i t i e s  are  r a n d o m l y  ass igned  in 

a s imi la r  f a sh ion /2 )  D u e  to the  diff iculty o f  ca l cu la t ing  a*  for  such  systems,  

m u c h  effort  has  been  d e v o t e d  to d e v e l o p i n g  v a r i o u s  schemes  for  o b t a i n i n g  

a p p r o x i m a t e  i n f o r m a t i o n  a b o u t  a*.  O n e  of  the  p r inc ipa l  a p p r o a c h e s  has  
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been to develop series expansions for o*, which have been primarily of two 
different types. The first type is an expansion of 0* in powers of p~ (or P2), 
the idea of which goes back to Maxwell himselfJ 3) We shall refer to this 
type of expansion as a volume fraction expansion. The second type involves 
perturbing 0" about a homogeneous medium 01 = 0"2, (4,5) i.e., expansion in 
powers of (1 -0"2/al), which we shall refer to as a perturbation expansion. 
The coefficients in this expansion can be expressed in terms of the correla- 
tion functions of the microstructure, which in practice are quite difficult to 
compute. 

While truncating the above expansions provides good approximate 
formulas for 0"* when the expansion parameter is small, this procedure 
typically does not provide accurate information in more delicate regimes, 
such as near percolation (0"2~0"~, Pz~Pc=perco la t ion  threshold), par- 
ticularly when only a few of the coefficients in the expansion are available. 
However, one approach which has received a great deal of attention is the 
derivation of bounds on 0" which incorporate the perturbation expansion 
coefficients.(1,5 8) The methods that have been developed provide a way of 
converting uncontrolled, truncated expansions into rigorous information 
about 0", in the form of upper and lower bounds that are valid for all 01, 
02, and P2. The bounds become tighter when more perturbation coef- 
ficients are known , and converge to the actual a* if all are known. Of 
course, near percolation, the upper and lower bounds typically will be 
relatively far apart. 

The purpose of the present work is twofold, the first of which we now 
describe. While the validity of the perturbation expansion is well estab- 
lished (5'8) due to the analyticity of 0" in the variable (1-02/01)  in a 
suitable domain containing 0, the corresponding question for the volume 
fraction expansion has remained open. Recently, however, it was proved (9) 
for the bond lattice that for any 01 and 0"2 in an appropriate domain with 
crl, a2 r  ~*(p) is analytic in an open neighborhood containing [0, 1] in 
the complex p-plane, with, say P=P2.  Here this result is extended to 
infinitely interchangeable media, (l~ a class which includes both the cell 
materials in the continuum and the bond lattice, thus providing for the first 
time in the present context a rigorous basis for the widely used volume 
fraction expansion. The proof is based on an integral representation for 
a*, (5'8) which holds for general stationary random media. The key fact 
about infinitely interchangeable media which allows the proof to go 
through is that the perturbation coefficients are polynomials in p. It should 
be remarked that the analyticity of o*(p) is presumably not true in general. 
For example, a*(p) for a periodic array of spheres of volume fraction p 
embedded in a host material is believed to be analytic at p = 0 only in the 
variable pl/3, so that 0"*(p) has a branch cut there (see, e.g., ref. 12). In this 



Effective Conductivity of the Square Lattice 367 

case, while the integral representation holds, the perturbation coefficients 
are not polynomials in po 

The second purpose of this work is to derive bounds on a*(p)  for the 
bond lattice in two dimensions. These bounds incorporate perturbation 
coefficients up to fourth order. What is novel is that we use the method of 
infinite interchangeability (l~ to compute the perturbation coefficients 
from a single volume fraction expansion coefficient. In particular, the first 
three perturbation coefficients are computed from the first-order volume 
fraction coefficient, and then the fourth is obtained from the first three 
using Keller's interchange equality, (13'~3) which holds only in d = 2 .  It 
should be noted that this method works just as easily for any infinitely 
interchangeable medium in d =  2 whose first-order volume fraction coef- 
ficient is known. 

The bounds are obtained from the perturbation coefficients using the 
integral representation method, (5'8'~5) and in particular, by iterated frac- 
tional linear transformations, (~6) which are particularly useful for higher- 
order bounds. The bounds we obtain are similar to the fourth-order 
bounds of Milton (~7) for the continuum, except that since we are on the 
bond lattice, our coefficients are computed explicitly, whereas theirs are 
given in terms of geometrical parameters, which must subsequently be 
calculated for any particular class of media. With cr I = 1 and ~r 2 ~< al ,  we 
have plotted the bounds for various o-2, and find that for 0.5 < a 2 ~< 1, our 
bounds are extremely tight for all p and essentially provide a formula for 
~*(p). Even for a 2 =0.1 the bounds are reasonably tight. In the case of 
a2 = 0 the lower bound collapses to 0, but the upper bound is nontrivial, 
although it does not given much information in the regime p ~ Pc = 1/2. 

We note that Bergman and Kantor  (18~ have computed the perturba- 
tion coeff• up to third order analytically and to eight-order numeri- 
cally for the bond lattice in d =  3, in an effort to obtain information about 
the percolation regime via the truncated perturbation series, with a limited 
degree of success. Part of our motivation for the work here is our belief 
that, as mentioned before, it is useful to convert these uncontrolled series 
into rigorous information about ~r*(p), which we have done analytically in 
the d =  2 case to fourth order. 

We close this section by remarking that the methods employed in this 
paper have already been applied to other situations, such as investigating 
the transport properties of polycrystals. (19) We expect that these methods 
should be applicable to other properties of lattices, such as elasticity, and 
even to some nonlinear problems. 

822/61/1-2-24 
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2. F O R M U L A T I O N  

We formulate the effective conductivity problem for general stationary 
random media in the continuum, (2~ which is the natural setting for the 
integral representation. Subsequently, we shall consider the special case of 
infinitely interchangeable media, and discuss how the lattice case fits into 
the general framework. 

Let (s P) be a probability space, and let a(x, co) be a stationary 
stochastic process in x ~ Na and co e O. The space f~ represents the set of all 
realizations of the random medium, and P is a probability measure on f2 
which is compatible with the stationarity, i.e., it is invariant under the 
translation group Zy: ~ ~ ,(2 defined by 

"CyCO(X)=CO(X-I- y), gX, y~Na, coef2 (2.1) 

We consider two-component media, so that ~(x, co) takes two values al 
and ~2, and can be written as 

O'(X, co) = 0"1ZI(X , co) + O2Z2(X , co) (2.2) 

where the characteristic function Xj(X, co) equals one for all realizations co 
which have medium j at x, j = 1, 2, and equals zero otherwise. Let E(x, co) 
and J(x, co) be the stationary random electric and current fields satisfying 

J(x, co) = a(x, co) E(x, co) (2.3) 

V.  J(x, co) = 0 (2.4) 

V x E(x, co) = 0 (2.5) 

faP(dco) E(x, co) = (2.6) dk 

where ek is a unit vector in the kth direction. In (2.4) and (2.5) the differen- 
tial operators c3/c~xi are replaced by the infinitesimal generators Di of the 
unitary group Tx acting on L2(~, P) defined by 

(Txf)(co) = f(%co)  (2.7) 

where 

f(ZxOJ ) = f (x ,  oJ) (2.8) 

for any f~L2(~Q, P), which is a stationary process on R e and ~.(2o,8) By 
stationarity, we may focus attention at x = 0, and subsequently we shall 
drop the x notation. 



Effective Conductivity of the Square Lattice 369 

The effective conductivity tensor cr~ may now be defined as 

a)*k = fa P(d~o) a(co) E}((9) (2.9) 

where E~ is the j t h  component of E k satisfying (2.3)-(2.6). We shall only 
be interested in isotropic random media, i.e., when a~ = a*6jk (although 
our methods are not restricted to such media), and we then pick out one 
diagonal coefficient and focus on it, 

~* = ak* = f~a P(doo) l-a1X,(co) + azZz((O)] E~(~o) (2.10) 

Since (2.3), (2.4), and (2.10) are all linear in a(co), or* depends only on the 
ratio ~2/al, that is, a* is homogeneous of degree one in the ai. Thus, it 
suffices to let 

and we then define 

a 1= 1, G 2 = z  (2.11) 

m(z)=a*=f  P(d~o) [Zl(c~)+zz2(oa)] E~(co) (2.12) 

It has been proven (5'8) that m(z) is analytic off the negative real axis 
( - c o ,  0] in the z-plane. Furthermore, from the symmetric form of the 
definition of a*, (5,s) 

m(z) = f~ P(dco) (Zl + zz2) E k. E --~ (2.13) 

where the overbar denotes complex conjugation, m maps the upper half- 
plane to the upper half-plane, i.e., 

Im m(z) > 0 when I m z > 0  (2.14) 

It is useful to introduce the new function 

F(w) = 1 -re(z), w = 1/(1 - z )  (2.15) 

which is analytic off [0, 1] in the w-plane. In ref. 8 it was proved that F(w) 
has the integral representation 

F(w) =f~ dl2(t),w_t we [0, 1] (2.16) 
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where/x is a positive Borel measure on [0, 1 ]. This representation can be 
proved either as a consequence of the Herglotz theorem in analytic 
function theory (21) or as a consequence of the spectral theorem applied to 
the operator representation of F(w) arising from (2.4), 

F(w) =to  P(deg) Z2(co)[(w + Fz2) l ek] .ek (2.17) 

where F = V ( -  A)-1V. ,  with the differential opertors again replaced by the 
generators of translations on O. In the Hilbert space L2(f2, P) with weight 
Z2 in the inner product, FZ2 is a bounded self-adjoint operator with norm 
less than or equal to one. The formula (2.16) is the spectral representation 
of the resolvent (w + FZ2) - t ,  where # is the spectral measure of the family 
of projections of FZ2. 

We now wish to introduce a special class of stationary random media, 
namely, infinitely interchangeable media. (l~ To describe the idea, let us 
consider a specific example. Let all of N3 be covered with randomly 
positioned, nonoverlapping spherical cells with sizes ranging to the 
infinitesimal. Each cell is assigned the conductivity a t or a2 with 
probabilities 1 - p  and p, respectively, so that the resulting medium has a 
volume fraction 1 - p  of at ,  and p of a2. Suppose that we consider such 
a material in which the volume fractions of at and a2 are 1/3 and 2/3, 
respectively. The part covered by 0-2 can be thought of as a material which 
itself is composed of two materials of conductivities z2 and z3 that also 
have been assigned at random, occupy a volume fraction of 1/3 each (of the 
whole material), and happen to coincide with 0-2, i.e., z2 = z3 = 02. For  con- 
sistency we set zt = 0-1. We then have a mixture of three materials zl ,  z2, 
and z3, whose effective conductivity we call s=s(zl ,z2,  z3). This new 
material is a composite in its own right, and its effective conductivity func- 
tion s can have any value of Zl ,  z2, and z3 as arguments. Clearly, 
0-*(0-t, a2, p=2/3)=s(at ,  0-2, a3). Furthermore, by the random nature of 
the construction, it is also clear that s is a symmetric function of its 
variables, i.e., the conductivity s of the mixture of Zl, z2, and z3 will not 
change if, for example, all the cells containing zt are reassigned to contain 
z2, and vice versa. 

In view of this example, we give the following definition. (t~ 

D e f i n i t i o n .  A family of composites with effective conductivities 
6*(6 t ,  ffz, p )  , 0~<p~<l, is said to be infinitely interchangeable iff 
a*(a~, a2, p) is a continuous function of its three arguments a~, a2, and p, 
and for each integer n there exists a function sn(zl ..... zn) such that: 

(i) sn is an infinitely differentiable function around z t . . . . .  zn = 1. 
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(ii) sn is homogeneous of degree 1, i.e., sn(2zl,...,2z,)=)~sn(zl,..., z,). 

(iii) s,, is symmetric in its variables, i.e., 

s ~ ( z , ,  z2 , . . . ,~ , )  = sn(z i , ,  ~,~ ..... z~o) 

for any permutation (i,, i 2 ..... in)  of the indices i,..., n. 

(iv) For  each integer k ~< n we have 

a*(al, a2, (n - k)/n) = s~(al,..., al, a2,..., az) 

where on the right-hand side there are k of the a~ and ( n -  k) of 
the a2. 

It should be noted that all examples of symmetric cell materials in the 
literature are infinitely interchangeable. (~0. ~) 

As in the more general stationary random case, it suffices to consider 
a~ = 1 and a2 = z. In this case, we define again 

m(z, p )=  ~*(al = 1, a2=z,  p) (2.18) 

Via (iv), we have 

m(z, ( n - k ) / n )  =s, (1  ..... 1, z ..... z) (2.19) 

with ( n - k )  of the z's on the right-hand side. 
We finally consider the bond lattice in 7/d, which is a special case of 

both the above classes of media. Each bond is randomly assigned the 
conductivity al or a2 with probability 1 - p  and p, respectively. The space 

from the stationary random setup can be identified with {al,  a2} dz~- 
Here the unitary translation group of (2.7) is generated by composition of 
the operators T + = T+e~ and T~ = T_e~, where ei is a unit vector in the ith 
direction. We can then define the forward and backward difference 
operators 

D + = T + - I (2.20) 

D 7 = I - T T ,  i = 1  ..... d (2.21) 

which act on L2(~, P), where I is the identity operator. The stationary ran- 
dom current field is J (o) )=  (Jl(o~) ..... Jd(~o)), where Ji(co) is the current in 
the bond emanating from the origin in the positive ith direction. The 
electric field E(co) = (E~(~o),..., Ea(co)) can be defined by 

J,(~o) = a~(co) E,(co), i =  1,..., d (2.22) 
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where 

ai(~o) = a~ ;(](~o) + a2 X~(co), i=l,...,d (2.23) 

is the conductivity in the bond emanating from the origin in the positive 
ith direction, and ;(il and ;(~ are the characteristic functions of medium 1 
and medium 2, respectively, in that bond. For simplicity we shall drop the 
"i" superscript from subsequent ;(1 and ;(2. Equations (2.4) and (2.5) then 
take the form 

d 

E D~-Ji(~ ( 2 . 2 4 )  
i - 1  

D + Ej(co) - D fl Ei (~o) = 0 (2.25) 

while (2.6) still holds. 
The effective conductivity a* is still defined in the same way as above, 

and all of the results stated, including the representation formula, still hold 
in the present context. It should be remarked that the operator F in the 
lattice case is replaced by 

F = V + ( - A ) - I V -  �9 (2.26) 

where V + = (D~,..., Dff) and ( - A )  -1 is the inverse of the lattice Laplacian 
[see (3.9)]. 

Clearly the bond lattice satisfies properties (i)-(iv) of an infinitely 
interchangeable medium. [The continuity of a*(ol,  a2, p) in its three 
variables is only a technical aspect of the definition, but can be proven for 
the bond lattice in a variety of ways, and is certainly obvious physically. 
The proof can be reduced to showing that a*(al, a2, p) is monotonic 
in p for real al and 0"2 .(10'11)] Thus, the bond lattice is infinitely inter- 
changeable. 

3. P E R T U R B A T I O N  A N D  V O L U M E  F R A C T I O N  E X P A N S I O N S  

In this section we first exhibit the perturbation expansion and its 
coefficients for general stationary random media. Subsequently we establish 
the validity of the volume fraction expansion for infinitely interchangeable 
media by proving analyticity of m(z, p) in p. 

The perturbation expansion around a homogeneous medium (ol = a2, 
w =  or) is obtained as follows. For ]w] > 1, (2.16) can be expanded to yield 

F(w) = # o +  #1 + # 2 +  ... (3.1) 
W ~ W 3 
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where the/~j are the moments  of #, 

1 

= fo tj d#(t) >~ 0 (3.2) #j 

Equivalently,  (3.1) can be written as a Taylor  series for m(z), 

re(z)= 1 + ~ ae(z- 1) i (3.3) 
i = l  

where 
dim 

ai = ~-zi z= a = ( -  1)i-  l#i 1 (3.4) 

B y  equating the [w] > 1 expansion of (2.17) to (3.1), we obtain 

= ( - 1)J fa e(do)) [)(2(Vzz)Jek] .ek (3.5) #j 

for any k = 1, 2. 
Clearly, for any medium, 

#0  = P2 = P (3 .6 )  

#I=- f~P(&o)  z2D;( -A)  'DkZ2 (3.7) 

d 

#2= ~ f~P(&o)z2D~(-A) 1DTz2D+(-A ) 1D~:g 2 (3.8) 
i = 1  

where the opera tor  ( - A ) - I  is expressed as discrete convolut ion with the 
lattice Green's  function, 

where g(x, y) solves 

( - A ) - l f ( x ) =  ~ g(x ,y) f (y)  (3.9) 
y c  2 7d 

Ag(x, y) = { - O1 x # = y (3.10) 

While (3.7) is fairly easy to calculate, the calculation of (3.8) becomes 
somewhat  involved/18) For  j~>3, /zj apparent ly  cannot  be calculated 

the volume fraction of a2 = 1. 
In the case of the bond  lattice, (3.5) for j =  1 and j = 2  becomes 
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explicitly, except, of course, #3 in d =  2, which we calculate in the next 
section. 

We now wish to establish the validity of the volume fraction expansion 
for infinitely interchangeable media, 

Fix e > 0, and let 

m(z, p)= 1 + ~ O:i(z)p i (3.11) 
i = 1  

D~= {zl {z-  11 < l - e }  (3.12) 

To establish (3.11), we shall prove that for any e > 0  and any z~D~, 
re(z, p) is analytic in p in a suitable domain in the p-plane. The idea of the 
proof is to produce an open neighborhood of [0, 1] in the p-plane for 
which the ai=a~(p) in (3.3) are sufficiently bounded so as to obtain 
uniform convergence of (3.3). One of the key steps in the proof is contained 
in the following result. 

k e m m a  3.1. For infinitely interchangeable media, the coefficient 
a i ( P ) = ( - 1 ) i - ~ # i  1 in (3.4) is a polynomial in p of degree less than or 
equal to i. 

Proof From (2.19) it folows that 

dim= 1, = Z Z s~ (3.13) 
&, 

j = l  q e Q j  

where Qj is the set of all strings of length i in the indices k + 1,..., n that 
contain exactly j different indices, and 

Ys, 
sq= (1,..., 1) (3.14) 

~Z ql "'" OZ qi 

Let QO be the set of all strings of length i that contain exactly the indices 
1,..., j. Since s, is a symmetric function, we have 

2 s q= s q = ( n - k ) . . . ( n - k - j + l ) b ~ ( n )  (3.15) 
q~Qj j q~QO 

where 

1 
b~(n)=~ ~ s q (3.16) 

q~o~ 
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We then have from (3.13) 

dim ( l' ~ )  = ( n -  k) bil(n) + ( n -  k ) ( n - k -  l ) 

+ ...  + ( n - k ) . . . ( n - k - i + l ) b i ( n  ) (3.17) 

Notice that bj(n) does not depend on k. 
Let us now take i sequences of integers kl ,  l =  1,..., i, such that 

lim~ ~ o~(n- U,,)/n = l/i, and substitute k = kl, into (3.17). We obtain 

dim 7 1, nnU"  ) = n - k "  

(n-kt~) . . . ( n - k t , - i +  1) [nSbi(n) ] (3.18) 
+ ... + n ~ 

Equation (3.18) for l<<./<~i is a system of linear equations for the i 
quantities nJbj(n) (1-G<j~<i). As n tends to infinity, the matrix of 
coefficients converges to a nonsingular Vandermonde matrix. So, for large 
n, we can solve for the unknown using Cramer's rule, 

nJb~ = A~/An (3.19) 

The determinant A n tends to a nonzero limit. Since the left-hand side of 
(3.18) also has a limit, so does the determinant din. (The continuity in p of 
the derivatives of m with respect to z follows from the continuity of m itself 
in both variables and Cauchy's theorem in z.) It follows that the limits 

nlim nJb}(n)= cj (3.20) 

exist. Finally, taking the limit as n --* oo with (n - k)/n ~ p in (3.17) yields 

dim 
dz i (1, p ) = c l p  + ... + cip i (3.21) 

We are now ready to state the following result. 

T h e o r e m  3.1. For any infinitely interchangeable medium, and for 
any e > O, there .exists an~open neighborhood V~ in the complex p plane 
such that [0, 1] c V~ and m(z, p) is analytic in D~• V~, with D~ given in 
(3.12). 

Proof. Fix ~>0.  Since for p~  [0, 1], # o ( p ) = p  and i~j(p)>~yj+l(p) 
for all n [via (3.2)], 

lai(p)l ~< 1, p ~ [-0, 1] (3.22) 
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Now we must extend what we can of (3.22) into the complex plane. 
Consider S = { p ~ C I p ~ [0, 1 ] }. Conformally map S onto the unit disk U 
in the ~ plane, so that p = oo gets mapped to ~ = 0, and [0, 1 ] gets mapped 
to the unit circle I~l = 1. Since ai(p) is an ith-order polynomial in p, as(C) 
has at worst an ith-order pole at ~ = 0. Thus ~a~(~) is analytic in U. Since 
lai(~)l ~ 1 for I~1 = 1, by the maximum modulus principle, 

1 
las(~)l ~< IC1--7, C e g (3.23) 

Thus, for any small 3 ' > 0 ,  there is a small 6 > 3 ' > 0  such that in the 
annulus A~, defined by 1/> ICf > 1 - 6 ' ,  

la,(~)t ~< (1 + 3 )  i, ( eAa ,  (3.24) 

For any z e D~., we can choose 6 and 3' such that 

I(1 + 3 ) ( z -  1)1 < k <  1 (3.25) 

Now let V~ be the set in the p plane that maps to A ~,. Then for p e V~ and 
zeD~, lai(p)(z- 1)iL < U <  1. Then (3.3) converges uniformly in D~x V~, 
which proves the theorem. 

As a consequence of Theorem 3.1, we have the following result. 

C o r o l l a r y  3.1. For any infinitely interchangeable medium, and for 
any e > 0, there exists a 6 > 0 such that for any p e B~ = {Ipt < ~ } and 
z e D , = { l z - l l < l - e } ,  the Taylor series in p, or volume fraction 
expansion, 

m(z, p)= 1 + ~ O~i(z)p i (3.26) 
i = l  

converges uniformly. Furthermore, for any of the above p and z, the 
double Taylor series in p and ( z -  1) 

m(z, p)= 1 + ~ ~o.p~(z- 1) j (3.27) 
i , j = l  

converges uniformly. 

The first-order coefficient c~ 1 in (3.26) has been calculated for the bond 
lattice in any dimension, (22"23~ 

d(z - 1) 
(3.28) 

c q -  ( d _  l ) + z  

In addition, in ref. 23, expressions for c% in d = 2  are derived and are 
evaluated numerically. 
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4. PERTURBATION COEFFICIENTS FOR THE BOND LATTICE 

Here we use the property of infinite interchangeability to compute the 
perturbation coefficients a i=a i (p )  in (3.3) to fourth order for the bond 
lattice. The first three are computed in any dimension and the fourth is 
computed in d =  2. 

In (3.6) it was remarked that for any medium, a~(p)= p. To explain 
our procedure, we begin by rederiving this elementary result. From (2.19) 
and the symmetry of sn, we have 

where 

d m  

l Os. 
sn = ~zi (1,.--, 1) 

I To do this, we note that To compute a~, it then suffices to compute s,.  

sn(z,..., z) = z (4.2) 

Thus, 

ns~n = 1 (4.3) 

1 1/n. Now (4.1) and (4.3) give a l [ ( n - k ) / n ] = ( n - k ) / n  and, by o r  S n = 

continuity, a~(p)= p, for all volume fractions p. 
Let us now compute the second-order coefficient a2. Two differentia- 

tions of (2.19) yield 

where 

= ( n - k ) s ~ n l + ( n - k ) ( n - k - 1 ) s ~ n 2  (4.4) 

~1 ~2sn 
sn = a~-T, {1,..., 1) and 12 8Zsn (1 ..... 1) 

s.  = ~Zl 8z2 

u and ~2 To do this, we differentiate (4.2) twice We wish to determine s, s , .  
to obtain 

, , ~  + ,,(n - 1)~.  *~ = o (4.~) 

which gives us one relation between the two unknowns. Now call 

d2m 
A2(v) =- ~z  2 (1, v) (4.6) 



378 Bruno and Golden 

We clearly have 

s~=A2(1/n)  (4.7) 

and from (4.5) it then follows that 

sn12 = -A2(1 /n ) / (n -  1) (4.8) 

Substitution of (4.7) and (4.8) into (4.4) gives 

1 r /m 

Finally, given any volume fraction p, we take a limit in (4.9) as 
n--, o% k ~  0% and ( n - k ) / n  ~ p. Now, from (4.6) and (3.26) we clearly 
have 

lim nA 2 =--~-z2 (1) 
n ~  c o  

(4.10) 

and so the limiting form of (4.9) is 

d2~l 
d2mdz 2 (1, p) = ~ (1) p(1 - p) (4.11) 

For the d-dimensional bond lattice, we have from (3.28) that 

d2~j 2 
dz 2 ( 1 ) = - ~  

so that 

1 d2m --p(1 --p)  (4.12) 
a2(P)=2-~z2 (l' P) d 

The above procedure can be generalized ~176 to allow for the 
computation of any perturbation coefficient from appropriate information 
about the dilute limit. Specifically, knowledge of the first r coefficients 
~1 ..... c~ r of the volume fraction expansion yields the 2 r+  1 perturbation 
coefficients al,...,a>+~. To do this, it is necessary to use as many 
"homogeneity relations" like (4.5) as possible. If derivatives of order i are 
being considered, then [-(i+ 1)/2] independent homogeneity relations can 
be obtained. This is illustrated in the following computation of the 
coefficient of a 3 . 
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From (2.19), we have 

~c)s, + 3 ( n - k ) ( n - k - 1  J~n d z  3 1, = (n - ~ '  m t ~112 

+(n k)(n k 1 ) ( n - k - " "  ~23 - -  - - z ) s n  (4.13) 

We thus need to obtain the unknowns s~ 11, s112, and s~ 23. By homogeneity, 
we have the equations 

sn(z,..., z ) = z  (4.14) 

and 

s~(z,..., z, 1) =zsn(1 ..... 1, I/z) (4.15) 

where in (4.15) there are n -  1 of the z's on the left and n - 1 of the l's on 
the right. Three differentiations of Eqs. (4.14) and (4.15) give the following 
two independent equations for the unknowns: 

111 s n +3(n-1)s ln12+(n-1)(n-2)s ln13=O (4.16) 

n -ms. +3(n_l)(n_2)sln12+(n_l)(n_2)(n_~)sn~, 123=_3s nll (4.17) 

No other independent equations can be obtained by homogeneity. To 
complete the system (4.16), (4.17), we use again information from the 
dilute limit. Let us define 

d3m 
A3(I)) = ' ~ z 3  (1, v ) (4.18) 

It is clear that 

sm d 3 m /  1\ ( ! )  
(4.19) 

The system (4.16), (4.17), (4.19) can now be solved, and we obtain, 
using (4.7), 

!ll = A3(1/n) Sn 

s~,2 = A2(1/n) + A3(1/n) (4.20) 
n--1 

s~23 _ 3A2(1/n) + 2A3(1/n) 
(n-- 1 ) ( n - 2 )  
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Putting these results into (4.13), we obtain 

+2 ( n - k ) ( n - k -  1 ) ( n - k -  
(4.21) 

+ [ -  3 ( n - k ) ( n - k - 1 ) _ ~  3 ( n - k ) ( n - k - 1 ) ( n - k  

Now, given a certain volume fraction p, we let n, k ~ oo in such a way that 
(n-k)/n--, p. To do this, we notice that from (4.18) and (3.26) we have 

nlimoo nA3 \nJ dz 3 (1) (4.22) 

From (4.10) and (4.22) we see that the limiting form of Eq. (4.22) is 

d30~1 d20~l d3m (1, p )=[  p -  3p3 + 2p 3] ~ (1) -3[  p 2 - p  3]-J~-z2 (1) (4.23) 
dz 3 

For the d-dimensional bond lattice, we have from (3.28) 

d2ch - 2  (4.24) 
&2 (1)= d 

and 

d3~i 6 
dz 3 (1) = j5  (4.25) 

Therefore, after minor manipulations, we obtain 

a3(p) = ~2 p(1 - p)[1 + ( d -  2)p]  (4.26) 

In the two-dimensional case (d=  2) the even-order coefficients can be 
easily obtained from the previous ones (7'24) by using Keller's interchange 
equality,(13,14) 

re(z, p)m(1/z, p)=z  (4.27) 
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For instance, differentiating (4.27) four times yields 

a3 2 1 a4 = ~ -  (2al -- 3) - (a2--al+3)+~a1(al--1) (4.28) 

Putting the results we have already obtained into (4.28), we obtain for the 
two-dimensional square lattice 

a4(p) = �89 - p ) ( p 2 _  p _  1) (4.29) 

5. F O U R T H - O R D E R  B O U N D S  ON m(z, p) FOR THE 
S Q U A R E  LATTICE 

In this last section we use the perturbation coefficients found in the 
previous section to obtain rigorous, fourth-order upper and lower bounds 
on m(z, p) valid for all z ~  1 and p c  [0, 1]. We shall only sketch the 
method here, as all of the details of this well-established procedure can be 
found in ref. 16. For  simplicity, only real z's are considered, although 
complex z's can be handled as well by a similar procedure. 

Let G(w) be defined by 

fld•(t) G(w)= w -  t '  w >  1 (5.1) 

with/~ ~ M a ,  

M a = positive Borel measures on [0, 1 ] d# = a (5.2) 

Note that Ma is a compact, convex set whose extreme points are Dirac 
point measures a6,.(dt) concentrated at any t *e  [0, 1]. Further note that 
the assumption that/~ ~ Ma is equivalent to knowing the first-order term in 
the perturbation expansion of G(w) about w = oc, 

G(w)=a/w+ . . . ,  w >  1 (5.3) 

For fixed w, the extreme values of G(w) under (5.3) are obtained by 
evaluating (5.1) with the above extremal measures. In particular, the mini- 
mum of G(w) is 

G(w) >>. a/w (5.4) 

In the present situation, F(w) in (3.1) for the d = 2  square lattice is 
known to fourth order, 

~1 + ~ +  #3 + ... (5.5) F(w)=P~ +w w 4 
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where 

]20 ~ P~ 
p(1 - p )  p(1 - p )  

# '  = 2 ' /~2 4 

p ( 1 -  p)[l + p ( 1 -  p)] 
# 3 =  8 

(5.6) 

In order to use (5.4), we successively t ransform F(w) three times using 
fractional linear t ransformat ions  which preserve functions of type (5.1), to 
obta in  a function which is known only to first order. First we let  

1 1 
F1 . . . .  (5.7) 

12o wF 

which has the expansion 

El Vo vl v2 
= w + 7 ~ + 7 ~ +  ... 

(5.8) 

/ 'll 
Vo = 75 (5.9) 

/-to 

vl ~ ~ (5.1o) 

/~3 2#1#2 //~ 
V2 UO 2 /.,/3 ~- ~04 ( 5 . 1 1 )  

where the v i are the momen t s  of a positive measure  on [0, 1]. Subse- 
quently, we consider 

1 1 
F 2 . . . .  (5.12) 

Vo wE1 

which has the expansion 

F2='7~ n l+  ... (5.13) 
W W 2 

YI V2 V2 
z - -  

~/o v 2, r/1-vo2 Vo3 (5.14) 

where the t/i are moment s  of a positive measure  on [0, 1]. Finally, we 
consider 

1 1 rh/r/o 2 + 
F3 = (5.15) 

~1o wF2 w 
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Applying (5.4) to (5.15) yields an upper  bound  on m(z, p), 

1 
m(z, p)<~ 1 - w / i Z o _  [1/Vo_tlo/(W_th/rlo) ] -1 (5.16) 

where w = 1/(1 - z). 
To  obta in  a lower bound  on rn(z, p), we apply the same procedure  to 

1 1 - wF 
E(w) = 1 (5.17) 

m w(1 - F) 

which has the expression 

Oo O,  O2 O3 
E(w) = ~ + 

w V 
(5.18) 

01 = 1 -- go 

0 1 = # o - # 2 - # 1  

02 = #1 - #2 - 2#o#1 + #2 _ #o 3 

03 = U 2  - -  # 3  - -  (2#0#2 + #2) + 2#0#~ - 3#2#, 

(5.19) 

Whereas  (5.16) is of the form 

m(z, p) <~ g(1, z, go, #1, #2, ~3) (5.20) 

the corresponding lower bound  can be writ ten as 

m(z, -~ <" g , 1, 0o, 01, 02, 03 (5.21) 

The  bounds  are plot ted for var ious values of z in Fig. 1. For  compar i son  
we have included the second-order  (Hash in -Sh t r i kman)  bounds,  

1 - p  p 
z -~ ~ m(z, p)  ~< 1 + (5.22) 

1/(1 - z )  + p / 2  1 / ( z  - 1 ) + (1 - p ) / 2  

where 0~<z~< 1 (see, e.g., ref. 8). In the case of  z = 0  we have also plot ted 
some numerical  da ta  of Ki rkpa t r i ck  ~22) along with his effective med ium 
theory solution. 

822/61/1-2-25 
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m(z,p) 

.1 ,2  .3  4 .5  .6  ? .B 9 ~ 

P 

(a) 

1 0 , = , i , p , ~ , ~ , i , i , J , i , 

8 z=O. l  

P 

( b )  

Fig. 1. Bounds on the effective conductivity m(z, p) of the two-dimensional square lattice for 
(a) z=0 .5 ,  (b) z=0 .1 ,  (c) z=0.01 ,  and (d) z = 0 .  The outer set of bounds incorporate only 
second-order perturbation coefficients (Hashin-Shtr ikman bounds). The inner set of bounds 
are the new fourth-order bounds. In the case z = 0,only the two upper bounds are included. 
Also in this case we have plotted the straight-line effective-medium theory solution of 
Kirkpatrick (2z) along with some data from his numerical simulations. 
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a(z,p) 

e .1 .2 .3 4 .5 6 7 .B .r ~ 0 
P 

(c) 

9 

z=O 
.8 

7 

6 

= (z ,p )  5 

a 

3 

.1 %* 

6(~ .1 .2 .3 .a .5  .6 .7 .B .9 .0 
P 

(d) 

Fig. 1. (Continued) 
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